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Abstract

My name is Daniel Liu1 and I am a high school freshman. In this paper I will be presenting
and proving a new inequality I found, which I dub the ”Reverse Rearrangement Inequality”. I
named it this because of its striking similarity to the well-known Rearrangement Inequality, although its
resemblance was purely coincidental: I happened upon it when creating a problem for the Proofathon
competition. This inequality specializes in problems with products on both sides, and on problems with
permutated sequences.

A very special thanks to Cody Johnson2 for properly formatting this PDF and editing; without
him, I would have never been able to even begin creating this paper. Also, a shoutout to Art of Problem
Solving users jh235, vincenthuang75025, minimario, FlakeLCR, mathtastic, mursalinmath and any others
who I may have forgotten to mention for helping me out along the way.

1Contact me at dliu@proofathon.org (bobthesmartypants on AoPS)
2Contact him at cody@proofathon.org (codyj on AoPS)
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1 Definitions and Notation

Let {a1, a2, . . . an} and {b1, b2, . . . bn} be two non-negative sequences of real numbers. For example, a1 = 1,
a2 = 5, a3 = π, a4 = 0, a5 = 9001 is a valid sequence. However, a1 = 4, a2 = −3, a3 = i + 1 is not a valid
sequence because it contains a negative real, and it contains a non-real number.

Two sequences {a} and {b} are said to be similarly ordered if a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn,
or a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn.Two sequences {a} and {b} are said to be oppositely ordered
if a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn, or a1 ≥ a2 ≥ · · · ≥ an and b1 ≤ b2 ≤ · · · ≤ bn.

σ(1), σ(2), . . . σ(n) denotes a permutation of the numbers 1, 2, . . . n. For example, (σ(1), σ(2), σ(3), σ(4)) =
(1, 4, 3, 2) is a valid permutation. (1, 4, 2, 2) is not a valid permutation because both σ(3) and σ(4) take on
the value of 2. Note: (1, 2, 3, 4) is a valid permutation; it is known as the identity permutation.

The permutation σ(1), σ(2), . . . σ(n) will sometimes be referred to simply as σ. Thus, for example, the
permutation σ′ would be referencing the permutation σ′(1), σ′(2), . . . σ′(n)

2 Reverse Rearrangement Inequality

Theorem. Given two sequences {a} and {b} that are similarly ordered, the inequality

(a1 + b1)(a2 + b2) · · · (an + bn) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n))

is true.
If instead, {a} and {b} are oppositely ordered, then the inequality

(a1 + b1)(a2 + b2) · · · (an + bn) ≥ (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n))

is true.
These two inequalities can be combined and compactly written as

n∏
k=1

(ak + bk) ≤
n∏
k=1

(ak + bσ(k)) ≤
n∏
k=1

(ak + bn−k+1)

given that {a} and {b} are similarly ordered.
Example.
As an explicit example, when n = 3, and (σ(1), σ(2), σ(3)) = (2, 3, 1), we get the inequality

(a1 + b1)(a2 + b2)(a3 + b3) ≤ (a1 + b2)(a2 + b3)(a3 + b1) ≤ (a1 + b3)(a2 + b2)(a3 + b1)

2.1 Proof of Lower Bound

Suppose that {a} and {b} are similarly ordered; we want to prove that

(a1 + b1)(a2 + b2) · · · (an + bn) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (an + bσ(n))

for all permutations σ.
We shall proceed with induction on n.
Base Case. n = 1.
Clearly a1 + b1 ≤ a1 + b1.
Induction Hypothesis. Assume that

(a1 + b1)(a2 + b2) · · · (ak + bk) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (ak + bσ(k))

for all permutations σ.
We want to prove that

(a1 + b1)(a2 + b2) · · · (ak+1 + bk+1) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (ak+1 + bσ(k+1))
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for all permutations σ.
Let i, j be the unique pair of positive integers (possibly equal) such that σ(i) = k + 1 and σ(k + 1) = j.
Now define a unique permutation σ′(1), σ′(2), . . . σ′(k) of 1, 2, . . . k such that σ′(x) = σ(x) for all x 6= i, and

σ′(i) = j. This permutation can always be formed because we are simply reducing σ(i) = k+1→ σ(k+1) = j
to σ′(i) = j.

We want to prove that

(a1 + b1)(a2 + b2) · · · (ak+1 + bk+1) ≤ (a1 + bσ(1)) · · · (ai + bσ(i)) · · · (ak+1 + bσ(k+1))

Using our induction hypothesis with the permutation σ′, we see that

(a1 + b1)(a2 + b2) · · · (ak+1 + bk+1) ≤ (a1 + bσ′(1))(a2 + bσ′(2)) · · · (ak + bσ′(k))(ak+1 + bk+1)

By the definition of σ′, we can substitute σ(x) in for σ′(x) for all x 6= i and j in for σ′(i):

(a1 + bσ′(1)) · · · (ak + bσ′(k))(ak+1 + bk+1) = (a1 + bσ(1)) · · · (ai + bj) · · · (ak + bσ(k))(ak+1 + bk+1)

Now for a lemma:
Lemma.

(ai + bj)(ak+1 + bk+1) ≤ (ai + bk+1)(ak+1 + bj)

Proof.
Expanding gives

aiak+1 + aibk+1 + bjak+1 + bjbk+1 ≤ ak+1bk+1 + aiak+1 + bjbk+1 + aibj

Simplifying:
ak+1bk+1 + aibj − aibk+1 − bjak+1 ≥ 0

This factors as
(ak+1 − ai)(bk+1 − bj) ≥ 0

Since {a} and {b} are similarly ordered, either both ak+1 − ai and bk+1 − bj are positive or both are
negative or, in the case of σ(k+ 1) = k+ 1, both are zero; either way, the inequality is true. Thus the lemma
is true. �

Using this lemma, we see that

(a1 + bσ(1)) · · · (ai + bj) · · · (ak + bσ(k))(ak+1 + bk+1) ≤ (a1 + bσ(1)) · · · (ai + bk+1) · · · (ak + bσ(k))(ak+1 + bj)

But wait! k + 1 = σ(i) and j = σ(k + 1), so

(a1 + bσ(1)) · · · (ai + bk+1) · · · (ak + bσ(k))(ak+1 + bj) = (a1 + bσ(1))(a2 + bσ(2)) · · · (ak+1 + bσ(k+1))

Therefore

(a1 + b1)(a2 + b2) · · · (ak+1 + bk+1) ≤ (a1 + bσ(1))(a2 + bσ(2)) · · · (ak+1 + bσ(k+1))

Note that this proof works for any arbitrary permutation σ, so we are done. �
Summary.

(a1 + b1)(a2 + b2) · · · (ak+1 + bk+1) ≤ (a1 + bσ′(1))(a2 + bσ′(2)) · · · (ak + bσ′(k))(ak+1 + bk+1) (ind. hyp.)

= (a1 + bσ(1)) · · · (ai + bj) · · · (ak + bσ(k))(ak+1 + bk+1) (def. of σ′)

≤ (a1 + bσ(1)) · · · (ai + bk+1) · · · (ak + bσ(k))(ak+1 + bj) (lemma)

= (a1 + bσ(1))(a2 + bσ(2)) · · · (ak+1 + bσ(k+1)) (def. of σ)

In the induction step above equality happens when σ(k + 1) = k + 1. This means the equality case for
Reverse Rearrangement is when σ(k) = k for all k = 1→ n.
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2.2 Proof of Upper Bound

Proving the maximum inequality is extremely similar to proving the minimum inequality. The proof will be
left as an exercise to the reader.

2.3 Corollaries

We can also create two corollaries:
Corollary 1a.
Given a decreasing function f(x) such that f(x) ≥ 0 for all non-negative reals x, and non-negative reals

a1, a2, . . . an,

(a1 + f(a1))(a2 + f(a2)) · · · (an + f(an)) ≥ (a1 + f(aσ(1)))(a2 + f(aσ(2))) · · · (an + f(aσ(n)))

This can be compactly written as

n∏
k=1

(ak + f(ak)) ≥
n∏
k=1

(ak + f(aσ(k)))

Proof.
Assume WLOG that a1 ≤ a2 ≤ · · · ≤ an. Let f(ai) = bi for all i = 1 → n. Note that {a} and {b} are

oppositely ordered because f(x) is decreasing. By the Reverse Rearrangement Inequality, we are done. �
Corollary 1b.
Given an increasing function f(x) such that f(x) ≥ 0 for all non-negative reals x, and non-negative reals

a1, a2, . . . an,

(a1 + f(a1))(a2 + f(a2)) · · · (an + f(an)) ≤ (a1 + f(aσ(1)))(a2 + f(aσ(2))) · · · (an + f(aσ(n)))

This can be compactly written as

n∏
k=1

(ak + f(ak)) ≤
n∏
k=1

(ak + f(aσ(k)))

Proof.
Assume WLOG that a1 ≤ a2 ≤ · · · ≤ an. Let f(ai) = bi for all i = 1 → n. Note that {a} and {b} are

similarly ordered because f(x) is increasing. By the Reverse Rearrangement Inequality, we are done. �
Corollary 2a.
Given a decreasing function f(x) such that f(x) > 0 for all non-negative reals x, and non-negative reals

a1, a2, . . . an,

(a1f(a1) + 1)(a2f(a2) + 1) · · · (anf(an) + 1) ≤ (a1f(aσ(1)) + 1)(a2f(aσ(2)) + 1) · · · (anf(aσ(n)) + 1)

This can be compactly written as

n∏
k=1

(akf(ak) + 1) ≤
n∏
k=1

(akf(aσ(k)) + 1)

Proof.

Let g(x) =
1

f(x)
where f(x) is an increasing function. Applying Corollary 1b with g(x) gives

(
a1 +

1

f(a1)

)(
a2 +

1

f(a2)

)
· · ·
(
an +

1

f(an)

)
≤
(
a1 +

1

f(aσ(1))

)(
a2 +

1

f(aσ(2))

)
· · ·
(
an +

1

f(aσ(n))

)
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Multiplying both sides by f(a1)f(a2) · · · f(an) gives

(a1f(a1) + 1)(a2f(a2) + 1) · · · (anf(an) + 1) ≤ (a1f(aσ(1)) + 1)(a2f(aσ(2)) + 1) · · · (anf(aσ(n)) + 1)

as desired.
Corollary 2b.
Given an increasing function f(x) such that f(x) > 0 for all non-negative reals x, and non-negative reals

a1, a2, . . . an,

(a1f(a1) + 1)(a2f(a2) + 1) · · · (anf(an) + 1) ≥ (a1f(aσ(1)) + 1)(a2f(aσ(2)) + 1) · · · (anf(aσ(n)) + 1)

This can be compactly written as

n∏
k=1

(akf(ak) + 1) ≥
n∏
k=1

(akf(aσ(k)) + 1)

Proof.

Let g(x) =
1

f(x)
where f(x) is a decreasing function. Applying Corollary 1a with g(x) gives

(
a1 +

1

f(a1)

)(
a2 +

1

f(a2)

)
· · ·
(
an +

1

f(an)

)
≥
(
a1 +

1

f(aσ(1))

)(
a2 +

1

f(aσ(2))

)
· · ·
(
an +

1

f(aσ(n))

)
Multiplying both sides by f(a1)f(a2) · · · f(an) gives

(a1f(a1) + 1)(a2f(a2) + 1) · · · (anf(an) + 1) ≥ (a1f(aσ(1)) + 1)(a2f(aσ(2)) + 1) · · · (anf(aσ(n)) + 1)

as desired.
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3 Example Problems

1. For all positive integers n, prove that

n! ≤
(
n+ 1

2

)n
Proof.

First, we see that we have products on both sides of the inequality, which tells us that Reverse Rear-
rangement might work. In particular, it seems that the two sequences {a} and {b} perfectly pair up

with each other in order to create the RHS. Indeed, if we let ak = bk =
k

2
for k = 1 → n, they add

up, when similarly ordered, to 1, 2, . . . n and, when oppositely ordered,
n+ 1

2
,
n+ 1

2
, . . .

n+ 1

2
. Thus,

by Reverse Rearrangement, we have

1 · 2 · · ·n ≤
(
n+ 1

2

)n
so we are done. �

2. Let x, y, z be positive reals. Prove that(
x

y
+
y2

x

)(
y

z
+
z2

y

)(
z

x
+
x2

z

)
≥ (x+ 1)(y + 1)(z + 1)

Proof.

Let’s first add the fractions on the LHS to get(
x2 + y3

xy

)(
y2 + z3

yz

)(
z2 + x3

zx

)
≥ (x+ 1)(y + 1)(z + 1)

Multiplying both sides by x2y2z2 gives

(x2 + y3)(y2 + z3)(z2 + x3) ≥ x2y2z2(x+ 1)(y + 1)(z + 1)

In order to use Reverse Rearrangement, we want to create something like x2 + x3 on the RHS.
Fortunately, this is easy: just combine the x2 with the x+ 1 and ditto for y, z.

(x2 + y3)(y2 + z3)(z2 + x3) ≥ (x3 + x2)(y3 + y2)(z3 + z2)

Let a1 = x2, a2 = y2, a3 = z2, and b1 = x3, b2 = y3, b3 = z3. We see that {a} and {b} are similarly
ordered, so we can use Reverse Rearrangement to prove this inequality. �

3. Let a1, a2, . . . an be non-negative reals. Prove that(
1

a1
+ a2 + 2

)(
1

a2
+ a3 + 2

)
· · ·
(

1

an
+ a1 + 2

)
≤ (a1 + 1)2(a2 + 1)2 · · · (an + 1)2

a1a2 · · · an

Proof.

We see that we have a bunch of products, which seems promising. However, the LHS has three
terms, while our inequality only has two terms. We can divide the three terms into two terms, but it’s
currently not that easy to decide what to divide. Thus, let’s look at the RHS first. Expanding the
RHS gives

RHS =
(a21 + 2a1 + 1)(a22 + 2a2 + 1) · · · (a2n + 2an + 1)

a1a2 · · · an
=

(
a21 + 2a1 + 1

a1

)(
a22 + 2a2 + 1

a2

)
· · ·
(
a2n + 2an + 1

an

)
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But note that
(a2i + 2ai + 1)

ai
= ai + 2 +

1

ai

Now it’s very clear what we want to divide the terms of the LHS into: Let f(ai) =
1

ai
+ 2. This

function is decreasing, so we can use Corollary 1a:

(a1 + f(a1))(a2 + f(a2)) · · · (an + f(an)) ≥ (a1 + f(an))(a2 + f(a1)) · · · (an + f(an−1))

Plugging f(x) =
1

x
+ 2 back in, we get(

a1 +
1

a1
+ 2

)(
a2 +

1

a2
+ 2

)
· · ·
(
an +

1

an
+ 2

)
≥
(
a1 +

1

an
+ 2

)(
a2 +

1

a1
+ 2

)
· · ·
(
an +

1

an−1
+ 2

)

Note that we found earlier that ai +
1

ai
+ 2 =

(ai + 1)2

ai
. Subbing that back in gives us

(a1 + 1)2(a2 + 1)2 · · · (an + 1)2

a1a2 · · · an
≥
(
a1 +

1

an
+ 2

)(
a2 +

1

a1
+ 2

)
· · ·
(
an +

1

an−1
+ 2

)
But this is our desired result, so we are done. �

4. Let x, y, z be non-negative real numbers. Prove that

(x2 − x+ 1)(y2 − y + 1)(z2 − z + 1) ≥
(
x2y + 1

y + 1

)(
y2z + 1

z + 1

)(
z2x+ 1

x+ 1

)
Proof.

First, multiply both sides by (x+ 1)(y + 1)(z + 1). This reduced the LHS to (x3 + 1)(y3 + 1)(z3 + 1)
so we just need to prove that

(x3 + 1)(y3 + 1)(z3 + 1) ≥ (x2y + 1)(y2z + 1)(z2x+ 1)

This looks like a nice time to use Corollary 2b, with the function f(x) = x2. Proceeding with that
path:

(xf(x) + 1)(yf(y) + 1)(zf(z) + 1) ≥ (yf(x) + 1)(zf(y) + 1)(xf(z) + 1)

which is true by Corollary 2b. �
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4 Important Concepts

Before starting the problems section here are some important concepts to successfully using the Reverse
Rearrangement Inequality. I recommend looking over this list before and after solving a problem.

1. Look for products on both sides of the inequality.

If you see products on both sides of the inequality, then it should trigger your brain to put a mental
note that Reverse Rearrangement might be applicable. Reverse Rearrangement usually cannot handle
inequalities with terms being added together on either side, as it is hard to turn that into a product.

2. Look for permutations.

If you see that the two sides of the inequality are essentially the same except for a permutation of a
group of variables, then Reverse Rearrangement may be an option. An extremely common permutation
to look out for is

σ(a1) = a2, σ(a2) = a3, . . . σ(an) = a1

3. Look for problems having only one variable per term.

If both sides of the inequality have terms that have more than one variable, try to transform one of
the sides to have only one variable per term.

As an example, the expression

(x2 + y + 1)(y2 + z + 1)(z2 + x+ 1)

has more than one variable per term but

(x2 + x+ 1)(y2 + y + 1)(z2 + z + 1)

has one variable per term.

4. Try to make corresponding terms have the same degree.

If the corresponding terms in each pair of terms is the same degree or you can make it the same degree,
then it will help in successfully applying the Reverse Rearrangement Inequality. For example, consider

(ab+ bcd+ d) ⇐⇒ (c2 + a3 + b)

we can see that the degrees of ab and c2 are both 2, the degrees of bcd and a3 are both 3, and the
degrees of d and b are both 1.

5. If no clear way to permutate the variables is seen, try a substitution.

Substituting often takes an expression that Reverse Rearrangement can’t handle to an expression it
can handle. Substituting can also help get rid of a variable that Reverse Rearrangement needs to get
rid of in order to work properly.

For example, given the expression (a + b + c) it is troublesome to use Reverse Rearrangement due to
its three variables. However, we can transform it into

a

(
1 +

b

a
+
c

a

)
= a

(
1 +

1

x
+ z

)
where x =

a

b
, y =

b

c
, and z =

c

a
, and after getting rid of the a by cancellation from both sides or

another method, we only have two variables per term, ideal for Reverse Rearrangement.

6. Use Algebraic Manipulations.

Algebraic manipulation is a cornerstone of successfully using Reverse Rearrangement. Spotting the
right algebraic manipulation to use in a given situation will greatly increase your chances of solving a
Reverse Rearrangement problem.
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5 Problems

5.1 Problems

1. Let {a1, a2, . . . an} be a permutation of {1, 2, . . . n}.
Prove that

n∏
k=1

(ak + k) ≤ (n+ 1)n

2. Let a1, a2, . . . an and b1, b2, . . . bn be two non-negative increasing sequences.

Prove that
n∏
i=1

n∏
j=1

(ai + bj) ≥
n∏
k=1

(ak + bk)n

3. Given that x, y ≥ 1 where x, y are reals prove that

(x2 − x+ y)(y2 − y + x) ≥ x2y2

4. Given that a1, a2, . . . an ≥ 1 are reals, prove that

(a21 − a1 + a2)(a22 − a2 + a3) · · · (a2n − an + a1) ≥ a21a22 · · · a2n

5. Define reals x, y, z ≥ 1. Prove that

ln exex ln eyey ln ezez ≥ ln exey ln eyez ln ezex

6. Given non-negative reals k, a1, a2, . . . an, prove that∏
cyc

(
ka1−a2 + 1

)
≥ 2n

7. Two half-circles are drawn as shown below, with a line l0 through the two intersections points, X,Y
of the half-circles as shown. Lines lk for k = −n→ n parallel to the bases of the half-circles are drawn
such that the distances between lk and l0, and l−k and l0 are always the same for all k = 1→ n.

...

...

X Yl0

Anln Cn Bn

l−n

C−n A−n B−n

The intersection points of lk with one of the half-circles are labeled Ak, Bk, and with the other half-circle
at Ck, as shown in the diagram.

Prove that
n∏

k=−n

|AkBk| ≤
n∏

k=−n

|BkCk|

8. Given that a1, a2, . . . an are non-negative real numbers and k ≥ 1 is a positive integer, prove that

(a21 + 2)(a22 + 2) · · · (a2n + 2) ≥ (a1a2 + 2)(a2a3 + 2) · · · (ana1 + 2)
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9. Given positive negative reals k, a1, a2, . . . an satisfying a1a2 · · · an = 1, prove that

(a1 + k)(a2 + k) · · · (an + k) ≥ (k + 1)n

10. Points A1, . . . A5 are collinear with O, and so are points B1, . . . B5, with ∠A1OB1 = 90◦. In addition,
the distance between adjacent points is 1, as shown in the diagram.

O A1 A2 A3 A4 A5

B1

B2

B3

B4

B5

Points A1, . . . A5 are connected with one of B1, . . . B5 each at random; this creates 5 lines having lengths
of L1, . . . L5.

Prove that
480
√

2 ≤ L1L2L3L4L5 ≤ 1560
√

2

5.2 Challenge Problems

1. Given that a1, a2, . . . an are non-negative real numbers, prove that

(a21 + 2a1)(a22 + 2a2) · · · (a2n + 2an) ≤ (a1a2 + a1 + a2)(a2a3 + a2 + a3) · · · (ana1 + an + a1)

2. Given that 0 ≤ α, β, γ ≤ π, prove that∏
cyc

(3 sinα− sin 3α) ≤
∏
cyc

(sin3 α+ 3 sinα sinβ sin γ)

3. Given that x, y, z are non-negative reals such that xy + yz + zx = 1, prove that

(x2 + y2 + 2)(y2 + z2 + 2)(z2 + x2 + 2) ≥ 8(x+ y + z − xyz)2

4. Given that a1, a2, . . . an are non-negative real numbers, prove that∏
cyc

(a31 + a2 + 1) ≥
∏
cyc

(a1a
2
2 + a2 + 1)

5. Given that x, y, z are non-negative real numbers, prove that

(x2 + xy + y2)(y2 + yz + z2)(z2 + zx+ x2) ≥ (xy + yz + zx)3

6. Given that a, b, c are the sides of a triangle satisfying 2A2 ≥ P where A is area and P is perimeter,
prove that

(a+ b)(b+ c)(c+ a) ≤ a2b2c2
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6 Solutions

6.1 Problem Solutions

1. Solution.

We want to prove that
n∏
k=1

(ak + k) ≤ (n+ 1)n

Note that when ak = n − k + 1, the two sequences a1, a2, . . . an and 1, 2, . . . n are oppositely ordered.
Call this specific permutation of 1, 2, . . . n the sequence A1, A2, . . . Ak. So, we have that the RHS =
(A1+1)(A2+2) · · · (An+n). Since {A} and 1, 2, . . . n are oppositely ordered, by Reverse Rearrangement
we have that

(A1 + 1)(A2 + 2) · · · (An + n) = (n+ 1)n ≥ (a1 + 1)(a2 + 2) · · · (an + n)

where a1, a2, . . . an is a permutation of 1, 2, . . . n. But this is exactly what we’re trying to prove, so
we’re done. �

2. Solution.

We want to prove
n∏
i=1

n∏
j=1

(ai + bj) ≥
n∏
k=1

(ak + bk)n

We see that the

RHS = (a1 + b1)(a1 + b1) · · · (a1 + b1)︸ ︷︷ ︸
n times

(a2 + b2)(a2 + b2) · · · (a2 + b2)︸ ︷︷ ︸
n times

· · · (an + bn)(an + bn) · · · (an + bn)︸ ︷︷ ︸
n times

Thus by Reverse Rearrangement,

RHS ≤
(

(a1+b1)(a1+b2) · · · (a1+bn)
)(

(a2+b1)(a2+b2) · · · (a2+bn)
)
· · ·
(

(an+b1)(an+b2) · · · (an+bn)
)

But the RHS of the above inequality is just

n∏
i=1

n∏
j=1

(ai + bj) so we are done. �

3. Solution.

We want to prove that
(x2 − x+ y)(y2 − y + x) ≥ x2y2

Consider the function f(x) = x2− x; its increasing when x ≥ 1 so we can use Reverse Rearrangement.
By Corollary 1b, we have that

(x+ f(x))(y + f(y)) ≤ (x+ f(y))(y + f(x))

Subbing the function back in, we see that

(x+ x2 − x)(y + y2 − y) ≤ (x+ y2 − y)(y + x2 − x)

But simplifying gives
(x2 − x+ y)(y2 − y + x) ≥ x2y2

which is exactly what we wanted. �
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4. Solution.

Note that this problem is a generalization of the previous problem; we have n variables instead of 2
variables. We can solve it with a similar fashion to the previous problem: let f(x) = x2 − x. Since
f(x) is increasing for x ≥ 1, we can use Reverse Rearrangement. By Corollary 1b, we have that

(a1 + f(a1))(a2 + f(a2)) · · · (an + f(an)) ≤ (a1 + f(an))(a2 + f(a1)) · · · (an + f(an−1))

Subbing the function back in, our inequality turns into

(a1 + a21 − a1)(a2 + a22 − a2) · · · (an + a2n − an) ≤ (a1 + a2n − an)(a2 + a21 − a1) · · · (an + a2n−1 − an−1)

but this simplifies to the inequality we want to prove, so we’re done. �

5. Solution.

We can first simplify the inequality:

ln exex ln eyey ln ezez ≥ ln exey ln eyez ln ezex

(lnxex + 1)(ln yey + 1)(ln zez + 1) ≥ (lnxey + 1)(ln yez + 1)(ln zex + 1)

(ex lnx+ 1)(ey ln y + 1)(ez ln z + 1) ≥ (ey lnx+ 1)(ez ln y + 1)(ex ln z + 1)

Now let f(x) = e lnx. Confirm that f(x) is non-negative and increasing when x ≥ 1. By Corollary 2b,
we see that

(xe lnx+ 1)(ye ln y + 1)(ze ln z + 1) ≥ (ye lnx+ 1)(ze ln y + 1)(xe ln z + 1)

but this is exactly what we wanted to prove. �

6. Solution.

First off, we can write ka1−a2 =
ka1

ka2
which turns the inequality into

∏
cyc

(
ka1

ka2
+ 1

)
≥ 2n

Multiplying both sides by ka1+a2+···+an gives∏
cyc

(ka1 + ka2) ≥ ka1+a2+···+an · 2n

However, note that 2n = (1 + 1)n, so

ka1+a2+···+an · 2n = (ka1 + ka1) (ka2 + ka2) · · · (kan + kan) =
∏
cyc

(ka1 + ka1)

Thus we want to prove that ∏
cyc

(ka1 + ka2) ≥
∏
cyc

(ka1 + ka1)

but this is true by Reverse Rearrangement so we’re done. �

7. Solution.

We draw a vertical line directly through the middle of the diagram, and call the points of intersection
of this line and line lk as Pk for k = −n→ n.

13



...

...

X Yl0

Anln Cn Bn

l−n

C−n A−n B−n

Pn

P0

P−n

We see that
n∏

k=−n

|AkBk| =
n∏

k=−n

|AkPk|+ |BkPk|

and that
n∏

k=−n

|BkCk| =
n∏

k=−n

|BkPk|+ |CkPk|

Clearly the sequences |A−nP−n|, |A−n+1P−n+1|, . . . |AnPn| and |B−nP−n|, |B−n+1P−n+1|, . . . |BnPn|
are increasing.

Now, notice that
|AkPk| = |C−kP−k|

because lines lk and l−k are mirror images about line XY . Substituting that in, we just want to prove

n∏
k=−n

|AkPk|+ |BkPk| ≤
n∏

k=−n

|BkPk|+ |A−kP−k|

By Reverse Rearrangement, this is true, so we are done. �

8. Solution.

We want to prove that

(a21 + 2)(a22 + 2) · · · (a2n + 2) ≥ (a1a2 + 2)(a2a3 + 2) · · · (ana1 + 2)

This seems like a straightforward application of Corollary 2b, except for the fact that we are adding 2
to each of the terms on the inside of the parentheses, instead of 1 as needed in the corollary. However,

who said that the number had to be 1? If, when substituting g(x) =
1

f(x)
in the proof of Corollary

2b, we had substituted g(x) =
2

f(x)
instead, then our final result would have been

(a1f(a1) + 2)(a2f(a2) + 2) · · · (anf(an) + 2) ≥ (a1f(a2) + 2)(a2f(a3) + 2) · · · (anf(a1) + 2)

Now we can apply Corollary 2b straightforwardly, with f(x) = x:

(a1 · a1 + 2)(a2 · a2 + 2) · · · (an · an + 2) ≥ (a1 · a2 + 2)(a2 · a3 + 2) · · · (an · a1 + 2)

which is the inequality we wanted to prove. �

9. Solution.

We have a condition that a1a2 · · · an = 1; thus we can use the substitution ak =
bk
bk+1

for k = 1→ n−1

and an =
bn
b1

. This gives us a positive sequence b1, b2, . . . bn with no restrictions and the inequality(
b1
b2

+ k

)(
b2
b3

+ k

)
· · ·
(
bn
b1

+ k

)
≥ (k + 1)n
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Multiplying both sides by b1b2 · · · bn, we get

(b1 + kb2)(b2 + kb3) · · · (bn + kb1) ≥ (b1 + kb1)(b2 + kb2) · · · (bn + kbn)

Now it is obvious how Reverse Rearrangement applies: let f(x) = kx. Confirm that f(x) is increasing.
Thus, using Corollary 1b, the inequality is true, so we are done. �

10. Solution.

Let the point connected to Ak be Bσ(k) for k = 1→ 5. In addition, let OAk = ak and OBk = bk. This
makes

AkBσ(k) =
√
a2k + b2σ(k)

Thus we want to find the maximum and minimum of

5∏
k=1

√
a2k + b2σ(k) =

√√√√ 5∏
k=1

(
a2k + b2σ(k)

)
Note that by Reverse Rearrangement,

5∏
k=1

(
a2k + b2k

)
≤

5∏
k=1

(
a2k + b2σ(k)

)
≤

5∏
k=1

(
a2k + b26−k

)
However,

5∏
k=1

(
a2k + b2k

)
= (12 + 12)(22 + 22) · · · (52 + 52) = 460800

and
5∏
k=1

(
a2k + b26−k

)
= (12 + 52)(22 + 42) · · · (52 + 12) = 4867200

Thus,

√
460800 ≤

√√√√ 5∏
k=1

(
a2k + b2σ(k)

)
≤
√

4867200

which simplifies as

480
√

2 ≤

√√√√ 5∏
k=1

(
a2k + b2σ(k)

)
≤ 1560

√
2

which is what we wanted to prove. �

6.2 Challenge Problem Solutions

1. Solution.

At first glance, this seems like a straightforward application of Reverse Rearrangement, but upon fur-
ther inspection, we see that the trouble arises on the terms a1a2, a2a3, . . . ana1. In order to successfully
use Reverse Rearrangement, we have to make sure that the different variables are separated. To sep-
arate (a1a2 + a1 + a2), we recognize the familiar factorization known as Simon’s Favorite Factoring
Trick:

a1a2 + a1 + a2 + 1 = (a1 + 1)(a2 + 1)

Thus, a1a2 +a1 +a2 = (a1 +1)(a2 +1)−1. However, we still have the a1 +1 and a2 +1 terms together.
To fix this, we can make the clever manipulation

(a1 + 1)(a2 + 1)− 1 = (a2 + 1)

(
a1 + 1− 1

a2 + 1

)

15



Why does this change things? Look at what happens when we plug this substitution back in:

RHS = (a1a2 + a1 + a2)(a2a3 + a2 + a3) · · · (ana1 + an + a1)

=
∏
cyc

(a1 + 1)(a2 + 1)− 1

=
∏
cyc

(a2 + 1)

(
a1 + 1− 1

a2 + 1

)

=

(∏
cyc

a1 + 1

)(∏
cyc

a1 + 1− 1

a2 + 1

)

But wait: following similar algebraic manipulations as before, we have

LHS = (a21 + 2a1)(a22 + 2a2) · · · (a2n + 2an)

=
∏
cyc

(a1 + 1)(a1 + 1)− 1

=
∏
cyc

(a1 + 1)

(
a1 + 1− 1

a1 + 1

)

=

(∏
cyc

a1 + 1

)(∏
cyc

a1 + 1− 1

a1 + 1

)

Thus we want to prove that(∏
cyc

a1 + 1

)(∏
cyc

a1 + 1− 1

a1 + 1

)
≤

(∏
cyc

a1 + 1

)(∏
cyc

a1 + 1− 1

a2 + 1

)

Immediately, we see the benefit of our substitution: we can cancel out (a1 + 1)(a2 + 1) · · · (an+ 1) from
both sides to get (∏

cyc

a1 + 1− 1

a1 + 1

)
≤

(∏
cyc

a1 + 1− 1

a2 + 1

)

Now let f(x) = 1 − 1

x+ 1
. Confirm that f(x) is an increasing function for x ≥ 0. Now we can use

Corollary 1b to get

(a1 + f(a1))(a2 + f(a2)) · · · (an + f(an)) ≤ (a1 + f(a2))(a2 + f(a3)) · · · (an + f(a1))

Substituting the definition of our function back in and we get∏
cyc

(
a1 + 1− 1

a1 + 1

)
≤
∏
cyc

(
a1 + 1− 1

a2 + 1

)
which is exactly what we wanted to prove, so we’re done. �

2. Solution.

First off, we notice that all the variables are in terms of sinα, sinβ, sin γ except sin 3α. Thus, let’s
change that using the triple angle formula:

3 sinα− sin 3α = 3 sinα− (3 sinα− 4 sin3 α) = 4 sin3 α

The LHS is therefore equal to ∏
cyc

(4 sin3 α) = 64 sin3 α sin3 β sin3 γ
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Thus we want to prove that∏
cyc

(sin3 α+ 3 sinα sinβ sin γ) ≥ 64 sin3 α sin3 β sin3 γ

We have an ugly sinα sinβ sin γ term that is hard to work with using the Reverse Rearrangement
inequality, so let’s first simplify by dividing both sides by sinα sinβ sin γ:∏

cyc

(sin2 α+ 3 sinβ sin γ) ≥ 64 sin2 α sin2 β sin2 γ

However, we still have three variables per term on the LHS, which is hard to work with. The best
way to decrease the number of variables per term is substitution, as we’ve seen from previous and will
see on later problems, so let’s go with that. However, how will we substitute?

Observe what happens when we multiply by sinα sinβ sin γ again but in a different way:∏
cyc

(sin2 α sinβ + 3 sin2 β sin γ) ≥ 64 sin3 α sin3 β sin3 γ

Suddenly, we see the substitution: let a = sin2 α sinβ, b = sin2 β sin γ, and c = sin2 γ sinα. This turns
the inequality into ∏

cyc

(a+ 3b) ≥ 64abc

But by Reverse Rearrangement, ∏
cyc

(a+ 3b) ≥
∏
cyc

(a+ 3a) = 64abc

so we are done. �

3. Solution.

The LHS looks great for some Reverse Rearrangement, but the RHS not so much. We only have the
product of two terms (and a constant).

But first things first, we have a condition that xy + yz + zx = 1; thus, lets homogenize. The LHS is
simple: ∏

cyc

(x2 + y2 + 2) =
∏
cyc

(x2 + y2 + 2xy + 2yz + 2zx)

But wait a second: x2 + xy + yz + zx = (x+ y)(x+ z) and y2 + xy + yz + zx = (y + z)(y + x) so we
have∏

cyc

(x2 + y2 + 2xy + 2yz + 2zx) =
∏
cyc

(
(x+ y)(x+ z) + (y + z)(y + x)

)
=
∏
cyc

(x+ y)(x+ y + 2z)

Now let’s homogenize the RHS.

8(xyz − x− y − z)2 = 8
(
xyz − (xy + yz + zx)(x+ y + z)

)
= 8
(
xyz − (3xyz + x2y + x2z + y2x+ y2z + z2x+ z2y)

)2
= 8(x2y + x2z + y2x+ y2z + z2x+ z2y + 2xyz)2

= 8
(
(x+ y)(y + z)(z + x)

)2

17



Our inequality turns into∏
cyc

(x+ y)(x+ y + 2z) ≥ 8
(
(x+ y)(y + z)(z + x)

)2
Dividing both sides by (x+ y)(y + z)(z + x), we get∏

cyc

(x+ y + 2z) ≥ 8(x+ y)(y + z)(z + x)

We observe that we only have x + y, y + z, and z + x terms on both sides of the inequality, which
prompts us to substitute a = x+ y, b = x+ z, and c = y + z.

Thus we just need to prove the inequality∏
cyc

(a+ c) ≥ 8abc

This is perfect for Reverse Rearrangement now:∏
cyc

(a+ c) ≥
∏
cyc

(a+ a) = (2a)(2b)(2c) = 8abc

so we are done. �

4. Solution.

The trouble about this problem is that both sides have multiple variables per term on it; in our
previous problems, we usually see one side consist of only one variable per term. Since we don’t have
any expressions having one variable per term, why don’t we create one? Looking at the LHS and
RHS, it appears it is easier to work with the LHS, so we will do so.

We want to somehow transform ∏
cyc

(a31 + a2 + 1)

To do this, we think about using Reverse Rearrangement; after all, that’s what it’s good at: permu-
tating variables.

Let f(x) = x3 + 1. Check that this is increasing. Applying Corollary 1b, we get that

∏
cyc

(a31 + a2 + 1) =
∏
cyc

(a2 + f(a1))

≥
∏
cyc

(a1 + f(a1))

=
∏
cyc

(a31 + a1 + 1)

Thus, we just need to prove that∏
cyc

(a31 + a1 + 1) ≥
∏
cyc

(a1a
2
2 + a2 + 1)

Reverse Rearrangement worked for us once. Why not use it again? However, this time it cannot be
directly applied since we have a nasty a1a

2
2 term that we need to separate.

In our attempts to simplify it:
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∏
cyc

(a1a
2
2 + a2 + 1) =

∏
cyc

a22

(
a1 +

1

a2

)
+ 1

=
∏
cyc

a22

(
a1 +

1

a2
+

1

a22

)

To get our inequality to have the right format for the permutation needed for Reverse Rearrangement,
we do the same algebraic manipulations for

∏
cyc

(a31 + a1 + 1):

∏
cyc

(a31 + a1 + 1) =
∏
cyc

a21

(
a1 +

1

a1

)
+ 1

=
∏
cyc

a21

(
a1 +

1

a1
+

1

a21

)

We simplified our inequality to the following:∏
cyc

a21

(
a1 +

1

a1
+

1

a21

)
≥
∏
cyc

a22

(
a1 +

1

a2
+

1

a22

)

Dividing both sides by a21a
2
2 · · · a2n:∏

cyc

(
a1 +

1

a1
+

1

a21

)
≥
∏
cyc

(
a1 +

1

a2
+

1

a22

)

Now this looks more like an inequality we can use Reverse Rearrangement on. Let f(x) =
1

x
+

1

x2
.

Confirm that f(x) is decreasing. Thus, we can use Corollary 1a to get:

∏
cyc

(
a1 +

1

a1
+

1

a21

)
=
∏
cyc

(a1 + f(a1))

≥
∏
cyc

(a1 + f(a2))

=
∏
cyc

(
a1 +

1

a2
+

1

a22

)

And we are done. �

5. Solution.

There doesn’t seem to be any straightforward way to solve this problem, mainly because the RHS has
all three variables involved in each term. We don’t see an easy way to permutate a variable of a term
of the LHS to form a term of the RHS mainly because there is both an x2 and a y2 term in each of
the terms, so we need to find some way to simplify one or both sides.

The first thing that comes to mind is multiplying both sides by (x− y)(y − z)(z − x) because it turns
the LHS = (x3 − y3)(y3 − z3)(z3 − x3), but we cannot do this reliably because (x− y)(y − z)(z − x)
may be negative.

In an effort to simplify the LHS by using substitution, we divide both sides by x2y2z2:(
1 +

y

x
+
y2

x2

)(
1 +

z

y
+
z2

y2

)(
1 +

x

z
+
x2

z2

)
≥ (xy + yz + zx)3

x2y2z2
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Let’s substitute a =
y

x
, b =

z

y
, and c =

x

z
. Note the implied condition that abc = 1.

(1 + a+ a2)(1 + b+ b2)(1 + c+ c2) ≥ (xy + yz + zx)3

x2y2z2

In lieu of completing the substitution, we transform the RHS to be in a form that we can substitute
our a, b, c in:

(xy + yz + zx)3

x2y2z2
=

(
xy + yz + zx

x2

)(
xy + yz + zx

y2

)(
xy + yz + zx

z2

)
(∗)

=
(y
x

+
yz

x2
+
z

x

)(z
y

+
zx

y2
+
x

y

)(x
z

+
xy

z2
+
y

z

)
=

(
a+

a

c
+

1

c

)(
b+

b

a
+

1

a

)(
c+

c

b
+

1

b

)

To make the degrees of each term of 1 + a+ a2 and a+
a

c
+

1

c
the same pairwise, we multiply

1

c
by abc

(which remember equals 1). This is an important step for using the Reverse Rearrangement; usually,
the degrees of each of the terms pairwise needs to be the same. This gives us(

a+
a

c
+

1

c

)(
b+

b

a
+

1

a

)(
c+

c

b
+

1

b

)
=
(
a+

a

c
+ ab

)(
b+

b

a
+ bc

)(
c+

c

b
+ ca

)
Uh oh. We still have three variables in the RHS, and no clear way to permutate the variables. Let’s
go back to (∗) and try grouping the division of x2y2z2 differently, this time hopefully getting only two
variables per term on the RHS.

(xy + yz + zx)3

x2y2z2
=

(
xy + yz + zx

xy

)(
xy + yz + zx

yz

)(
xy + yz + zx

zx

)
=

(
1 +

z

x
+
z

y

)(
1 +

x

y
+
x

z

)(
1 +

y

z
+
y

x

)
=

(
1 +

1

c
+ b

)(
1 +

1

a
+ c

)(
1 +

1

b
+ a

)

Just like last time, we multiply
1

a
by abc to make it the same degree pairwise as a2:(

1 +
1

c
+ b

)(
1 +

1

a
+ c

)(
1 +

1

b
+ a

)
= (1 + ab+ b) (1 + bc+ c) (1 + ca+ a)

Aha! This time, we have only two variables per term in the expression. We have now reduced the
problem to proving that given abc = 1,

(1 + a+ a2)(1 + b+ b2)(1 + c+ c2) ≥ (1 + ab+ b) (1 + bc+ c) (1 + ca+ a)

Now we proceed typically: we need to separate the variables in the RHS so we can successfully turn it
into the LHS through a permutation. We see that 1+ab+b = 1+(a+1)b and that 1+b+b2 = 1+(b+1)b.
Now it is clear what to do:

Let f(x) = x+ 1. This is an increasing function, so using Corollary 2b, we have that

(af(a) + 1)(bf(b) + 1)(cf(c) + 1) ≥ (af(c) + 1)(bf(a) + 1)(cf(b) + 1)
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Subbing in the definition of f(x), we get that

(a(a+ 1) + 1)(b(b+ 1) + 1)(c(c+ 1) + 1) ≥ (a(c+ 1) + 1)(b(a+ 1) + 1)(c(b+ 1) + 1)

which simplifies into

(a2 + a+ 1)(b2 + b+ 1)(c2 + c+ 1) ≥ (ab+ b+ 1)(bc+ c+ 1)(ca+ a+ 1)

But this is exactly what we wanted to prove. Thus, we are finally done! �

6. Solution.

The most ugliest part about this problem is the condition 2A2 ≥ P ; it’s really hard to work with things
like these. Thus, let’s first try to simplify it by representing both things in terms of the sides a, b, c.

We know that P = a+b+c, and A =
1

4

√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) so our condition

turns into

2

(
1

4

√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

)2

≥ a+ b+ c

1

8
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) ≥ a+ b+ c

(a+ b− c)(a− b+ c)(−a+ b+ c) ≥ 8

We now have the condition in terms of a, b, c, but it still looks pretty ugly. To simplify matters, we use
the Ravi substitution: let a = x+ y, b = y + z, and c = z + x.

This turns the condition into

(x+ y + y + z − z − x)(y + z + z + x− x− y)(z + x+ x+ y − y − z) ≥ 8

which simplifies nicely into
xyz ≥ 1

Of course, we also need to substitute into the actual inequality now:

(x+ 2y + z)(y + 2z + x)(z + 2x+ y) ≤ (x+ y)2(y + z)2(z + x)2

Let’s expand each of the binomials on the RHS:∏
cyc

(x+ 2y + z) ≤
∏
cyc

(x2 + 2xy + y2)

Hmm... The coefficients of the variables look surprisingly similar, with only the degrees of the two
sides differing. This tells us to homogenize. The first thing that comes to mind is multiplying the LHS
by xyz, which is legal because 1 · LHS ≤ xyz · LHS which makes the inequality stronger. However,
this gives ∏

cyc

(x2 + 2xy + xz) ≤
∏
cyc

(x2 + 2xy + y2)

which looks kind of like it can be solved using Reverse Rearrangement except for the fact that we need
to change xz → y2 which is challenging.

But since we already are this close, let’s see if we can get any closer by multiplying or dividing both
sides by xyz. Multiplying by xyz will just make the degree higher, which might work but will be a
pain, so we divide by xyz on both sides. Also, something tells us that in order to make this work out,
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we’ll need some sort of substitution, just like how we solved Challenge problem 5, which also had all
three variables in each term.

Divide once:

1

xyz

∏
cyc

(x2 + 2xy + xz) ≤ 1

xyz

∏
cyc

(x2 + 2xy + y2)

∏
cyc

(x+ 2y + z) ≤
∏
cyc

(
x+ 2y +

y2

x

)

That
y2

x
term looks real ugly, and we still don’t see an easy substitution.

Divide twice:

1

xyz

∏
cyc

(x+ 2y + z) ≤ 1

xyz

∏
cyc

(
x+ 2y +

y2

x

)
∏
cyc

(
x

y
+ 2 +

z

y

)
≤
∏
cyc

(
x

y
+ 2 +

y

x

)

Suddenly the substitution becomes as clear as day. Let a′ =
x

y
, b′ =

y

z
, and c′ =

z

x
.

The inequality becomes ∏
cyc

(
a′ + 2 +

1

b′

)
≤
∏
cyc

(
a′ + 2 +

1

a′

)

Now the application of Reverse Rearrangement is obvious: let f(x) = 2+
1

x
; confirm that it is decreasing

for x > 0. By Corollary 1a, we have that∏
cyc

(
a′ + 2 +

1

a′

)
≥
∏
cyc

(
a′ + 2 +

1

b′

)
which is exactly our inequality, so we are done. �
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